THE MORAVA K-THEORIES OF SOME CLASSIFYING SPACES

NICHOLAS J. KUHN

ABSTRACT. Let P be a finite abelian p-group with classifying space BP. We compute, in representation theoretic terms, the Morava K-theories of the stable wedge summands of BP. In particular, we obtain a simple, and purely group theoretic, description of the rank of $K(s)^*(BG)$ for any finite group G with an abelian p-Sylow subgroup. A minimal amount of topology quickly reduces the problem to an algebraic one of analyzing truncated polynomial algebras as modular representations of the semigroup $M_n(\mathbb{Z}/p)$.

1. Main results. For a fixed prime p, there exists a sequence of cohomology theories $K(1)^*$, $K(2)^*$,... with $K(s)^*$ periodic with period $2(p^s-1)$. These are the Morava K-theories [13], and generalize ordinary complex K-theory in the sense that $K(1)^*$ is one of the (p-1) isomorphic summands of K^* (; \mathbb{Z}/p). Recently it has been becoming clear that they play a central role in homotopy theory—see, for example, the work of M. Hopkins and J. Smith [6]. $K(s)^*$ has further computational virtues: $K(s)^*(X)$ is always a free module over the coefficient ring $K(s)^*$, and there is a Kunneth isomorphism.

A major outstanding problem is to find good models for the spaces representing these theories. Related to this is the question of finding, for finite groups G, a group theoretic description for the rings $K(s)^*(BG)$, analogous to Atiyah's isomorphism [2]:

$$\hat{R}(G) \simeq K(BG).$$

The author, together with J. Harris, recently analyzed stable wedge decompositions of classifying spaces of abelian p-groups [5]. In this paper we compute, in representation theoretic terms, the Morava K-theories of the resulting wedge summands. As a consequence, we obtain a very simple, and purely group theoretic, description of the rank of $K(s)^*(BG)$ for any finite group G with an abelian p-Sylow subgroup.

To state our results, we establish some notation. It is convenient to let $K(0)^*$ be rational cohomology. We let $K(s)^*(X)$ always denote the reduced sth Morava K-theory of X. If X is a space or spectrum, we let $k_s(X)$ equal the rank of $K(s)^*(X)$ as a $K(s)^*$ -module, and, by abuse of notation, we let $k_s(G) = k_s(BG_+)$ for a finite group G. (BG_+ is the union of BG with a disjoint basepoint.)

Received by the editors May 27, 1986.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 55N22; Secondary 20G05.

Research partially supported by the Sloan Foundation and the NSF.

If P is a finite p-group, let $\mathbb{Z}/p[\operatorname{End}(P)]$ be the ring with basis the semigroup $\operatorname{End}(P)$. $\operatorname{End}(P)$ acts on BP and thus on BP_+ . It is easy to show that an idempotent e in $\mathbb{Z}/p[\operatorname{End}(P)]$ yields a stable wedge summand of BP_+ , eBP_+ , such that, e.g., $H_*(eBP_+; \mathbb{Z}/p) = e_*H_*(BP_+; \mathbb{Z}/p)$. In [5], we show that, if P is abelian, every stable wedge summand of BP_+ is homotopic to one of this form.

Note that End(P) acts diagonally on the set P^s so that, letting $\mathbb{Z}/p[P^s]$ denote the \mathbb{Z}/p -vector space with basis P^s , $\mathbb{Z}/p[P^s]$ is a $\mathbb{Z}/p[\text{End}(P)]$ -module.

THEOREM 1.1. Let P be a finite abelian p-group and let e be an idempotent in $\mathbb{Z}/p[\operatorname{End}(P)]$. Then

$$k_s(eBP_+) = \dim e \mathbb{Z}/p[P^s].$$

Now let G be a finite group with p-Sylow subgroup P. By transfer arguments, BG_+ is a stable wedge summand of BP_+ , localized at p. In our situation we can be more explicit. Let $W = N_G(P)/C_G(P)$ and let $e_W = |W|^{-1}\sum_{w \in W} w$ in $\mathbb{Z}/p[\operatorname{End}(P)]$. Then, if P is abelian, $BG_+ \approx e_W BP_+$ [5]. Furthermore, $e_W \mathbb{Z}/p[P^s] = \mathbb{Z}/p[P^s]^W$, a vector space with a basis corresponding to W-orbits in P^s . Theorem 1.1 thus implies

THEOREM 1.2. If G is a finite group with an abelian p-Sylow subgroup P, and $W = N_G(P)/C_G(P)$, then $k_s(G) = |P^s/W|$.

REMARKS 1.3. (i) Doug Ravenel has noted that $k_s(G)$ is finite for all finite groups G [12].

(ii) Using Atiyah's theorem and some representation theory, one can show [7] that for any finite group G,

$$k_1(G)$$
 = number of conjugacy classes of *p*-elements in G .

It is an amusing exercise using the Sylow theorems to check that this result is compatible with Theorem 1.2 above.

When $P = (\mathbf{Z}/p)^n$ one can identify $\operatorname{End}(P)$ with the matrix ring $M_n(\mathbf{Z}/p)$, P^s with the set $M_{n,s}(\mathbf{Z}/p)$ of $n \times s$ matrices over \mathbf{Z}/p , and the action of $\operatorname{End}(P)$ on P^s with matrix multiplication. In particular, letting s = n in Theorem 1.1 implies the following.

COROLLARY 1.4. Let M be an irreducible right $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ -module, let P_M be the associated principal indecomposable module (i.e., its projective cover), and let X_M be the associated wedge summand of $B(\mathbb{Z}/p)_+^n$. Then

$$k_n(X_M) = \dim P_M$$
.

Thus, no summand of $B(\mathbb{Z}/p)^n$ is K(n)-acyclic.

At the other extreme, we show

THEOREM 1.5. Of the $p^n - 1$ distinct indecomposable spectra that appear as wedge summands of $B(\mathbb{Z}/p)^n$, exactly (p-1)n are not acyclic in K-theory. For each such summand X, $k_1(X) = 1$.

Further analysis of $\mathbb{Z}/p[M_{n,s}(\mathbb{Z}/p)]$ as a $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ -module yields the next results.

THEOREM 1.6. (1) For each pair (n, s), there exists a linear function $\alpha_{n,s}: \mathbb{Z}^{n+1} \to \mathbb{Z}$ such that, if X is any wedge summand of $B(\mathbb{Z}/p)_+^n$,

$$k_s(X) = \alpha_{n,s}(k_0(X), \dots, k_n(X)).$$

Thus $k_s(X)$ is determined for all s by $k_0(X), \ldots, k_n(X)$.

- (2) If P is a finite abelian p-group and X is a wedge summand of BP, then $\sum_{s=0}^{\infty} k_s(X) t^s$ is a rational function with poles contained in the set $\{p^{-s} | s = 0, 1, 2...\}$.
- (3) If X is as in (2), the sequence $k_1(X)$, $k_2(X)$, $k_3(X)$,... converges, in the p-adic topology, to an element of $\mathbf{Z}_{(p)}$.

We note that the linear functions $\alpha_{n,s}$ will be made more explicit in the course of the proof.

Finally we note that J. F. Adams, J. Gunawardena and H. Miller have shown [1]:

$$\mathbb{Z}/p[M_n : (\mathbb{Z}/p)] \simeq \operatorname{Hom}_A(H^*(B(\mathbb{Z}/p)^s_+), H^*(B(\mathbb{Z}/p)^n_+))$$

where A is the mod p Steenrod algebra. Combined with our observations, this yields the amusing corollary:

COROLLARY 1.7. If X is a stable wedge summand of $B(\mathbb{Z}/p)^n$, for some n, then

$$k_s(X) = \dim \operatorname{Hom}_A(H^*(B(\mathbb{Z}/p)^s_+), H^*(X)).$$

The organization of the paper is as follows. Theorem 1.1 is proved in §3 after we discuss $K(s)^*(BP_+)$ in §2. Theorem 1.5 is proved in §4, Theorem 1.6 in §5. §6 contains some explicit calculations, e.g. $k_s(\operatorname{GL}_2(\mathbf{F}_q))$ where $q = p^d$, and $k_s(L(n))$ where $L(n) = \sum_{s=0}^{n} SP^{p^n}(S)/SP^{p^{n-1}}(S)$.

We illustrate the ideas of the proof of Theorem 1.1 by sketching the argument in the case $P = (\mathbf{Z}/p)^n$.

$$K(s)^*(B\mathbf{Z}/p_+) = K(s)^*[x]/(x^{p^s}),$$

so that $K(s)^*(B(\mathbf{Z}/p)_+^n) = K(s)^*[x_1, \dots, x_n]/(x_1^{p^s}, \dots, x_n^{p^s})$. The right action of $M_n(\mathbf{Z}/p)$ on $K(s)^*(B(\mathbf{Z}/p)_+^n)$ is determined by the formal group law for $K^*(s)$ —modulo some high-degree error terms, it is the standard action on a truncated polynomial algebra. We are left needing to show the purely algebraic result:

THEOREM 1.8. $(\mathbf{Z}/p[M_{n,s}(\mathbf{Z}/p)])^*$ and $\mathbf{Z}/p[x_1,\ldots,x_n]/(x_1^{p^s},\ldots,x_n^{p^s})$ have the same irreducible composition factors as right $\mathbf{Z}/p[M_n(\mathbf{Z}/p)]$ -modules.

The relevance of this result to Theorem 1.1 comes from the following elementary but handy observation, which will be used numerous times in our arguments.

LEMMA 1.9. Let R be a finite-dimensional algebra over a field \mathbf{F} , and let M and N be finitely generated right R-modules. The following conditions are equivalent:

- (i) $\dim_{\mathbb{F}} Me = \dim_{\mathbb{F}} Ne$ for all idempotents $e \in R$.
- (ii) M and N have the same irreducible composition factors.

Either condition is implied by

(iii) There exist R-module filtrations of M and N such that the associated graded objects are isomorphic as R-modules.

Thie project had its genesis during a recent visit to the University of Washington, when Doug Ravenel wrote down the numbers 1, 3, 3, 5, 2, 2 in my presence, For that, and for subsequent conversations, I give him hearty thanks. Thanks are also due to Dave Carlisle and Reg Wood for aid with the proof of Theorem 1.5.

2. $K(s)^*(BP_+)$. In this section we describe, up to filtration, the End(P)-module $K(s)^*(BP_+)$, where P is any finite abelian p-group. (See also the proof of Theorem 4.9 in [10].)

 $M_n(\mathbf{Z}/p)$ acts on the right of the polynomial algebra $S_n = \mathbf{Z}/p[x_1, \dots, x_n]$, where x_1, \dots, x_n are dual to the standard basis of $(\mathbf{Z}/p)^n$. For a fixed s, the ideal generated by the p^s powers is a submodule. We let $S_{n,s}$ denote the quotient $M_n(\mathbf{Z}/p)$ algebra $\mathbf{Z}/p[x_1, \dots, x_n]/(x_1^{p^s}, \dots, x_n^{p^s})$. More generally, note that $M(n_1, \dots, n_r)$ acts on $\bigotimes_{i=1}^r S_{n_i,is}$ where $n = n_1 + \dots + n_r$ and $M(n_1, \dots, n_r)$ is the subsemigroup of $M_n(\mathbf{Z}/p)$ consisting of matrices preserving the flag

$$(\mathbf{Z}/p)^{n_r} \subseteq (\mathbf{Z}/p)^{n_r+n_{r-1}} \subseteq \cdots \subseteq (\mathbf{Z}/p)^n.$$

(Here $(\mathbf{Z}/p)^m \subset (\mathbf{Z}/p)^n$ is the inclusion of the *last m* coordinates.)

Now suppose that $P = \prod_{i=1}^r (\mathbf{Z}/p^i)^{n_i}$. We define a "standard" action of End(P) on $\bigotimes_{i=1}^r S_{n_i,is}$ as follows: If $\operatorname{Tor}(P,\mathbf{Z}/p)$ is identified with $(\mathbf{Z}/p)^n$ in the obvious way, then it is easily checked that $\operatorname{Tor}(\alpha,\mathbf{Z}/p) \in M(n_1,\ldots,n_r)$ for $\alpha \in \operatorname{End}(P)$. This defines a map of semigroups $\operatorname{End}(P) \to M(n_1,\ldots,n_r)$, and thus a right action of End(P) on $\bigotimes_{i=1}^r S_{n_i,is}$.

PROPOSITION 2.1. If $P = \prod_{i=1}^{r} (\mathbb{Z}/p^{i})^{n_i}$ then, as algebras,

$$K(s)^*(BP_+) \simeq K(s)^* \otimes \left(\bigotimes_{i=1}^r S_{n_i,is}\right),$$

and the End(P) action is the standard one, modulo terms of higher degree.

COROLLARY 2.2. With P as above, and $e \in \mathbb{Z}/p[\operatorname{End}(P)]$ an idempotent,

$$k_s(eBP_+) = \dim \left[\bigotimes_{i=1}^r S_{n_i,is} \right] e.$$

We collect the results about Morava K-theories which imply Proposition 2.1. A good reference is [13, §4].

We start with some generalities. If E is an MU-oriented ring spectrum, then $E^*((\mathbb{C}P^{\infty})_+^n) = E^*[[x_1, \dots, x_n]]$, where each x_i has degree 2. The multiplication $\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$ defines a formal group law F over E^* .

The semigroup $M_n(\mathbf{Z})$ acts on \mathbf{Z}^n and thus on $(\mathbf{C}P^{\infty})^n = K(\mathbf{Z}^n, 2)$. The formal group law F determines the induced action on E^* cohomology: If $A = (a_{ij}) \in M_n(\mathbf{Z})$ then

$$A^*(x_j) = \sum_{i=1}^n [a_{ij}]_F x_i.$$

Since F(x, y) = x + y modulo higher-order polynomials in x and y, we conclude

LEMMA 2.3. Let $E^*((\mathbb{C}P^{\infty})_+^n) = E^*[[x_1, \ldots, x_n]]$ be filtered by degree, i.e. let $F_k E^*[[x_1, \ldots, x_n]] = \{f(x_1, \ldots, x_n) | f(x, \ldots x) \text{ is divisible by } x^k\}$. Then this is a decreasing filtration by sub- $M_n(\mathbb{Z})$ -algebras and the associated graded $M_n(\mathbb{Z})$ -algebra is isomorphic to $E^* \otimes \mathbb{Z}[[x_1, \ldots, x_n]]$ with the standard action.

Now suppose that P is a finite abelian group of rank n. Then P fits into a short exact sequence

$$0 \to \mathbb{Z}^n \to \mathbb{Z}^n \to P \to 0$$
.

and any endomorphism $\alpha: P \to P$ can be extended to a diagram:

where A_0 , $A_1 \in M_n(\mathbf{Z})$. This, in turn, induces a map of fibrations:

$$(S^{1})^{n} \rightarrow BP \stackrel{\delta}{\rightarrow} (CP^{\infty})^{n}$$

$$\downarrow_{A_{0}} \qquad \downarrow_{\alpha} \qquad \downarrow_{A_{1}}$$

$$(S^{1})^{n} \rightarrow BP \stackrel{\delta}{\rightarrow} (CP^{\infty})^{n},$$

and Gysin sequence techniques allow for a computation of $E^*(BP)$ as an End(P)module.

Specializing to the case of interest, we have $K(s)_* = \mathbb{Z}/p[v_s, v_s^{-1}]$, where v_s has degree $2(p^s - 1)$. From [13, §4] we have that δ^* : $K(s)^*(\mathbb{C}P_+^{\infty}) \to K(s)^*(B(\mathbb{Z}/p^i)_+)$ can be identified with the projection map $K(s)^*[[x]] \to K(s)^*[x]/(x^{p^{is}})$. Combining this with the Kunneth isomorphism,

$$K(s)^*(X) \hat{\otimes}_{K(s)^*} K(s)^*(Y) \simeq K(s)^*(X \wedge Y),$$

yields the algebra structure of $K(s)^*(BP_+)$ and that δ^* is epic in the diagram:

$$K(s)^*((\mathbb{C}P^{\infty})^n_+) \stackrel{A_1^*}{\to} K(s)^*((\mathbb{C}P^{\infty})^n_+)$$

$$\downarrow \delta^* \qquad \qquad \downarrow \delta^*$$

$$K(s)^*(BP_+) \stackrel{\alpha^*}{\to} K(s)^*(BP_+)$$

Proposition 2.1 now follows from Lemma 2.3 together with the observation that $Tor(\alpha, \mathbf{Z}/p) = A_1 \otimes \mathbf{Z}/p$: $(\mathbf{Z}/p)^n \to (\mathbf{Z}/p)^n$.

3. Proof of Theorem 1.1. Our proof consists first of a number of reductions. Reduction to the case $P = (\mathbf{Z}/p^r)^n$. We need the following theorem from [5].

THEOREM 3.1. Let $P = \prod_{i=1}^r (\mathbf{Z}/p^i)^{n_i}$. Any idempotent e in $\mathbf{Z}/p[\operatorname{End}(P)]$ is conjugate to one of the form $e_i \otimes \cdots \otimes e_r$ where e_i is an idempotent in $\mathbf{Z}/p[M_n(\mathbf{Z}/p^i)]$.

With notation as in this last theorem, we have

(3.2a)
$$e\mathbf{Z}/p[P^s] \simeq \bigotimes_{i=1}^r e_i \mathbf{Z}/p[(\mathbf{Z}/p^i)^{sn_i}]$$

and, by the Kunneth isomorphism for $K(s)^*$,

(3.2b)
$$k_{s}(eBP_{+}) = \prod_{i=1}^{r} k_{s}(e_{i}B(\mathbf{Z}/p^{i})_{+}^{n_{i}}).$$

It follows that Theorem 1.1 for all P follows from the theorem for P of the form $(\mathbb{Z}/p^r)^n$.

Reduction to the case $P = (\mathbf{Z}/p)^n$. The filtration $(\mathbf{Z}/p^r)^n \supset (\mathbf{Z}/p^{r-1})^n \supset \cdots \supset (\mathbf{Z}/p)^n$ is preserved by $M_n(\mathbf{Z}/p^r)$. This induces a filtration of $\mathbf{Z}/p[(\mathbf{Z}/p^r)^{ns}]$, and the associated graded module is isomorphic to $\mathbf{Z}/p[(\mathbf{Z}/p)^{nrs}]$ where $M_n(\mathbf{Z}/p^r)$ acts on $(\mathbf{Z}/p)^n$ via mod p reduction.

Let $e \in \mathbb{Z}/p[M_n(\mathbb{Z}/p')]$ be an idempotent and let $\bar{e} \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ be its mod p reduction. The above comments imply

(3.3a)
$$e\mathbf{Z}/p[(\mathbf{Z}/p^r)^{ns}] \simeq \bar{e}\mathbf{Z}/p[(\mathbf{Z}/p)^{nrs}].$$

An inspection of Corollary 2.2 yields

(3.3b)
$$k_{s}(eB(\mathbf{Z}/p^{r})_{+}^{n}) = k_{rs}(\bar{e}B(\mathbf{Z}/p)_{+}^{n}).$$

REMARK 3.4. In [5] it is shown that $H^*(eB(\mathbf{Z}/p^r)_+^n) \simeq H^*(\bar{e}B(\mathbf{Z}/p)_+^n)$ as graded vector spaces, and that the multiplicity of $eB(\mathbf{Z}/p^r)_+^n$ in $B(\mathbf{Z}/p^r)_+^n$ equals that of $\bar{e}B(\mathbf{Z}/p)_+^n$ in $B(\mathbf{Z}/p)_+^n$.

Reduction to the case s=1. Let $V=(\mathbf{Z}/p)^n$ and let $e\in \mathbf{Z}/p[\operatorname{End}(V)]$ be an idempotent. Since $\mathbf{Z}/p[V^s]\simeq \mathbf{Z}/p[V]^{\otimes s}$ naturally, we have

(3.5a)
$$e\mathbf{Z}/p[V^s] \simeq e\mathbf{Z}/p[V]^{\otimes s}.$$

With notation as in §2, we claim that

$$(3.5b) S_{n,s}e \simeq (S_{n,1}^{\otimes s})e.$$

(3.5b) will follow from the next lemma.

LEMMA 3.6. $S_{n,s}$ can be filtered by right $M_n(\mathbb{Z}/p)$ -submodules so that the associated graded module is isomorphic to $S_{n,1}^{\otimes s}$.

PROOF. We use the notation: $S_{n,s}(V^*) = S_{n,s}$ and ξ : $S_{n,s}(V^*) \to S_{n,s}(V^*)$ is the pth power map. Then $S_{n,s}(V^*)$ is filtered by the subalgebras $A_i \equiv S_{n,s-i}(\xi^i(V^*))$. Then, for $i = 1, \ldots, s$,

$$A_{i-1}//A_i \simeq S_{n,1}(V^*)$$

naturally, so that

$$E_0(S_{n,s}(V^*)) \simeq S_{n,1}(V^*)^{\otimes s}$$

as End(V)-modules.

Finally we are left needing to prove Theorem 1.1 in the special case when $P = (\mathbb{Z}/p)^n$ and s = 1. More precisely, we need to show that

$$\dim e \mathbf{Z}/p[(\mathbf{Z}/p)^n] = \dim S_{n,1}e$$

for all idempotents $e \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)]$.

View $V = (\mathbf{Z}/p)^n$ as a restricted Lie algebra with trivial bracket and pth power map. Let U(V) denote the universal enveloping algebra.

PROPOSITION 3.7. Let $E_0(\mathbb{Z}/p[V])$ be the graded algebra associated to the filtration of $\mathbb{Z}/p[V]$ by the augmentation ideal. Then there is a natural isomorphism of algebras

$$U(V) \simeq E_0(\mathbf{Z}/p[V]).$$

This is a special case of a more general theorem provided by D. Quillen in [11]. (For completeness, we give an explicit proof below.)

Assuming this proposition, we are nearly done. Note that $S_{n,1} \simeq U(V^*) \simeq U(V)^*$ as right End(V)-modules. Thus Proposition 3.7 implies that

$$(e\mathbf{Z}/p[V])^* \simeq S_{n,1}e$$

for all idempotents $e \in \mathbb{Z}/p[\operatorname{End}(V)]$. The proof of Theorem 1.1 is complete.

PROOF OF PROPOSITION 3.7. U(V) is isomorphic to $\mathbb{Z}/p[x_1, \dots, x_n]/(x_1^p, \dots, x_n^p)$ with the standard left $M_n(\mathbb{Z}/p)$ action. Let $\mathbf{e}_i \in V$ be the *i*th standard basis vector, and let $\Theta(x_i) = \mathbf{e}_i - \mathbf{0} \in \mathbb{Z}/p[V]$.

Lemma 3.8. Θ extends to an isomorphism of algebras

$$\Theta: \mathbb{Z}/p[x_1,\ldots,x_n]/(x_1^p,\ldots,x_n^p) \simeq \mathbb{Z}/p[V].$$

PROOF. To show that Θ does extend to an algebra map, it suffices to check that $\Theta(x_i)^p = 0$. This is okay: $(\mathbf{e}_i - \mathbf{0})^p = \mathbf{e}_i^p - \mathbf{0}^p = \mathbf{0} - \mathbf{0} = 0$ in $\mathbf{Z}/p[V]$. By dimension counting, to show that Θ is an isomorphism, it suffices to show that Θ is onto. This is easy: $\{\mathbf{e}_i, \dots, \mathbf{e}_n\}$ is a set of algebra generators for $\mathbf{Z}/p[V]$ and $\mathbf{e}_i = \Theta(1 + x_i)$.

Now note that if $\mathbb{Z}/p[V]$ is filtered by the augmentation ideal, and $\mathbb{Z}/p[x_1,\ldots,x_n]/(x_1^p,\ldots,x_n^p)$ is filtered by degree, then Θ is a filtration-preserving map (i.e., $\Theta(x_i)$ is in the augmentation ideal). The proof of Proposition 3.7 is completed with

LEMMA 3.9. Θ is an $M_n(\mathbb{Z}/p)$ -module map, up to filtration. More precisely, $\Theta(Ax) \equiv A\Theta(x)$ modulo terms of higher filtration, for all $A \in M_n(\mathbb{Z}/p)$, $x \in \mathbb{Z}/p[x_1,\ldots,x_n]/(x_1^p,\ldots,x_n^p)$.

PROOF. Since $M_n(\mathbb{Z}/p)$ acts on both $\mathbb{Z}/p[x_1, \dots, x_n]/(x_1^p, \dots, x_n^p)$ and $\mathbb{Z}/p[V]$ via algebra maps, it suffices to check the result when $x = x_i$. Furthermore, it suffices to assume that A is an "elementary" matrix, i.e. we can assume that A is diagonal, a permutation, or the matrix

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \\ & & I_{n-2} \end{pmatrix}.$$

If A is diagonal or a permutation, then $\Theta(Ax_i) = A\Theta(x_i)$. To check the last possibility it suffices to assume that n = 2 (so we are considering $\mathbb{Z}/p[x, y]/(x^p, y^p)$), $A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ and $x_i = x$. In this case, straightforward calculation shows that $A\theta(x) - \Theta(Ax) = \Theta(xy)$, which is in higher filtration.

4. K-theory. In this section we use Theorem 1.1 to prove Theorem 1.5, i.e. we compute $k_1(X)$ where X is an idecomposable wedge summand of $B(\mathbf{Z}/p)^n$. By [5], such spectra are in one-to-one correspondence with the conjugacy classes of primitive idempotents $e \in \mathbf{Z}/p[M_n(\mathbf{Z}/p)]$. These, in turn, correspond to the p^n distinct (absolutely) irreducible $\mathbf{Z}/p[M_n(\mathbf{Z}/p)]$ -modules, so that, if e corresponds to S, then

$$\dim Me = \text{multiplicity of } S \text{ in } M$$

for any $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ -module M.

Recall that $S_{n,1} = \mathbf{Z}/p[x_1, \dots, x_n]/(x_1^p, \dots, x_n^p)$. By the results in §3, $S_{n,1}$ and $(\mathbf{Z}/p[(\mathbf{Z}/p)^n])^*$ have the same irreducible composition factors as right $\mathbf{Z}/p[M_n(\mathbf{Z}/p)]$ -modules. We need to analyze these factors.

Let $S_{n,1}(d)$ be the homogeneous elements in $S_{n,1}$ of degree d. Theorem 1.5 follows from

PROPOSITION 4.1. The $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ -modules $S_{n,1}(d)$, $d=0,\ldots,(p-1)n$, are all distinct and irreducible.

We first show that the $S_{n,1}(d)$ are all distinct. For that, we work with $\mathbb{Z}/p[(\mathbb{Z}/p)^n]$.

LEMMA 4.2. There exists an orthogonal idempotent decomposition $1 = \sum_{i=1}^{p^n} e_i \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ such that $\dim e_i \mathbb{Z}/p[(\mathbb{Z}/p)^n] = 1$ for all i.

PROOF. Let $D_n \subset M_n(\mathbf{Z}/p)$ be the subsemigroup of diagonal matrices. The idempotent decomposition takes place in $\mathbf{Z}/p[D_n]$. For n=1, the proposition (and thus the lemma) are easy to verify: the $\mathbf{Z}/p[M_1(\mathbf{Z}/p)]$ -modules $S_{1,1}(d)$ are irreducible (they are one-dimensional) and distinct (they are powers of the determinant representation). For the general case, note that $\mathbf{Z}/p[D_n] = \mathbf{Z}/p[D_1]^{\otimes n}$, so tensoring the n=1 decomposition yields the lemma.

REMARK 4.3. Geometrically, our argument here corresponds to the following. $B\mathbf{Z}/p_+$ stably decomposes: $B\mathbf{Z}/p_+ \approx X_0 \vee \cdots \vee X_{p-1}$ with $k_1(X_i) = 1$ ($X_0 = S^0$ and $X_{p-1} = B\Sigma_p$). Thus $B(\mathbf{Z}/p)_+^n$ decomposes into p^n summands,

$$B(\mathbb{Z}/p)_+^n \simeq \bigvee_{0 \leqslant i_j \leqslant p-1} (X_{i_1} \wedge \cdots \wedge X_{i_n}),$$

each of which has $k_1 = 1$.

Given $I = (i_1, \ldots, i_n)$ with $0 \le i_j \le p-1$, let $e_I \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ be the idempotent corresponding to $X_{i_1} \wedge \cdots \wedge X_{i_n}$. By Lemma 4.2, in a primitive idempotent decomposition of e_I there will be a unique idempotent ε_I such that $\varepsilon_I \mathbb{Z}/p[(\mathbb{Z}/p)^n] \ne 0$. The number of irreducibles appearing in $\mathbb{Z}/p[(\mathbb{Z}/p)^n]$ will correspond to the number of conjugacy classes of the ε_I .

The group of permutation matrices conjugates the e_I 's to others, and thus does the same for the ε_I 's. In particular, if p=2, this yields an upper bound of n+1 on the number of conjugacy classes of the ε_I . But a lower bound is given by the number of $S_{n,1}(d)$: again n+1. Proposition 4.1 has thus been proved in this case.

EXAMPLE 4.4. $B\mathbb{Z}/3 \simeq X \vee B\Sigma_3$, stably and localized at 3. Then $B\Sigma_3$ is a wedge summand in $X \wedge X$ (see [5, §7]).

This example illustrates, geometrically, why our argument for p=2 fails for larger primes. (The example shows that $\varepsilon_{(0,2)}$ is conjugate to $\varepsilon_{(1,1)}$, even though $e_{(0,2)}$ is not conjugate to $e_{(1,1)}$.) Instead, we prove directly that the modules $S_{n,1}(d)$ are irreducible. The author learned of this proof from Dave Carlisle and Reg Wood.

For $I = (i_1, ..., i_n)$ with $0 \le i_j \le p-1$, let $|I| = i_1 + \cdots + i_n$, and let $x^I = x_1^{i_1} \cdots x_n^{i_n} \in S_{n,1}$. The irreducibility of $S_{n,1}(d)$ follows from a characteristic p version of Lemma 2.4 of [3].

LEMMA 4.5. Given I, J with |I| = |J| = d, there exists $\Theta_{I,J} \in \mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ such that

$$\Theta_{I,J}(x^K) = \begin{cases} x^J & if \ K = I, \\ 0 & if \ K \neq I, \ |K| = d. \end{cases}$$

PROOF. The existence of $\Theta_{I,I}$ follows exactly as in [3]. (In fact, $\Theta_{I,I} \in \mathbf{Z}/p[D_n]$.) Armed with the $\Theta_{I,I}$, it suffices to show that there exists $\Psi_{I,J}$ such that

$$\Psi_{I,J}(x^I) = x^J + \text{other terms},$$

since we can then let $\Theta_{I,J} = \Theta_{J,J} \circ \Psi_{I,J} \circ \Theta_{I,I}$. To show the existence of $\Psi_{I,J}$ it suffices to assume that n = 2, I = (i + 1, j), and J = (i, j + 1). This is then easy to verify:

$$(x + ay)^{i+1}y^j = a(i+1)x^iy^{j+1} + \text{ other terms,}$$

so letting $a = (i+1)^{-1} \in (\mathbb{Z}/p)^*$ yields a linear substitution $\Psi_{I,I}$.

- **5. The** k_s -sequence. In this section, we study the sequence of numbers $k_0(X)$, $k_1(X)$, $k_2(X)$, ... where X is a wedge summand of BP_+ , and prove Theorem 1.6. By the reductions (3.2b) and (3.3b) of §3, it suffices to prove Theorem 1.6 in the case when $P = (\mathbb{Z}/P)^n$, except that statement (2) of the theorem needs to be strengthened to
 - (2') If X is a summand of $B(\mathbb{Z}/p)_+^n$ then, for any r = 1, 2, ...,

$$\sum_{s=0}^{\infty} k_{rs}(X)t^{s}$$
 is a rational function with poles contained in the set $\{p^{-s} | s = 0, 1, 2, \dots\}$.

Using Theorem 1.1, we need to study the sequence

$$\left\{\dim e \mathbf{Z}/p \left[M_{n,s}(\mathbf{Z}/p)\right] \mid s=0,1,2,\dots\right\},\,$$

where e is an idempotent in $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$. We examine the structure of $M_{n,s}(\mathbb{Z}/p)$ as a left $M_n(\mathbb{Z}/p)$ -set.

If V is a subspace of $(\mathbf{Z}/p)^s$, let $M_V \subset M_{n,s}(\mathbf{Z}/p)$ be the set of all matrices with rows which are vectors in V.

LEMMA 5.1. The M_V satisfy the following properties:

- (1) M_V is a left $M_n(\mathbb{Z}/p)$ -set.
- (2) M_V is filtered by rank as a left $M_n(\mathbb{Z}/p)$ -set.
- (3) If V and V' are isomorphic subspaces of $(\mathbb{Z}/p)^s$, then $M_V \simeq M_{V'}$ as filtered left $M_n(\mathbb{Z}/p)$ -sets.
 - (4) $M_V \cap M_{V'} = M_{V \cap V'}$.

DEFINITIONS 5.2. (1) Let $a_{s,k} = \text{number of } k\text{-planes in } (\mathbf{Z}/p)^s$

$$=\frac{(p^s-1)\cdots(p^{s-k+1}-1)}{(p^k-1)\cdots(p-1)}.$$

(2) For $0 \le k \le n$, let $M'_{n,k} \subset M_{n,k}(\mathbb{Z}/p)$ be the set of matrices of rank < k, and let $N_{n,k}$ be the $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ -module $\mathbb{Z}/p[M_{n,k}(\mathbb{Z}/p)]/\mathbb{Z}/p[M'_{n,k}]$.

With these definitions, Lemma 5.1 has the following corollary.

COROLLARY 5.3. As left $\mathbb{Z}/p[M_n(\mathbb{Z}/p)]$ -modules,

$$\mathbb{Z}/p[M_{n,s}(\mathbb{Z}/p)]$$
 and $\bigoplus_{k=0}^{n} a_{s,k} N_{n,k}$

have the same irreducible composition factors.

Theorem 1.6 will now follow from an examination of the coefficients $a_{s,k}$. Let A_n be the $(n+1)\times (n+1)$ matrix with (s,k) entry $a_{s,k}$. Note that A_n is lower triangular, and thus invertible. The linear function $\alpha_{n,s}$: $\mathbb{Z}^{n+1} \to \mathbb{Z}$ of Theorem 1.6(1) will be the composite

(5.4)
$$\mathbf{Z}^{n+1} \stackrel{A_n^{-1}}{\to} \mathbf{Z}^{n+1} \stackrel{(a_{s,0}, \dots, a_{s,n})}{\to} \mathbf{Z}.$$

To prove statements (2') and (3) we use the following observation:

LEMMA 5.5. Let $\alpha_0, \alpha_1, \ldots$ be a sequence of elements in $\text{Hom}(\mathbf{Z}^m, \mathbf{Z})$. Let v_1, \ldots, v_m form a basis for \mathbf{Z}^m .

- (1) Suppose the sequence $\alpha_0(v)$, $\alpha_1(v)$,... converges, in the p-adic topology, to an element in $\mathbf{Z}_{(p)}$ for $v = v_1, \ldots, v_m$. Then the same is true for all $v \in \mathbf{Z}^m$.
- (2) Suppose $f_v(t) = \sum_{s=0}^{\infty} \alpha_s(v) t^s$ is a rational function with poles contained in the set $\{p^{-s} | s = 0, 1, 2, ...\}$ for $v = v_1, ..., v_m$. Then the same is true for all $v \in \mathbb{Z}^m$.

Applying this lemma to the basis $\{A_n e_0, \ldots, A_n e_n\}$ where $\{e_0, \ldots, e_n\}$ is the standard basis of \mathbb{Z}^{n+1} , we see that statements (2') and (3) of Theorem 1.6 follow from the next two lemmas.

LEMMA 5.6. For all r, k, the function $\sum_{s=0}^{\infty} a_{rs,k} t^s$ is a rational function with poles contained in the set $\{\bar{p}^s | s = 0, 1, 2, ...\}$.

LEMMA 5.7. For all k, the sequence $a_{0,k}, a_{1,k}, a_{2,k}, \ldots$ converges, in the p-adic topology, to an element of $\mathbf{Z}_{(p)}$.

PROOF OF LEMMA 5.6.

$$\sum_{s=0}^{\infty} a_{r,s} t^s = \frac{1}{(p^k - 1) \cdots (p-1)} \sum_{s=0}^{\infty} (p^{rs} - 1) \cdots (p^{rs-k+1} - 1) t^s$$

which is a linear combination of functions of the form

$$\sum_{s=0}^{\infty} p^{as}t^s = \frac{1}{\left(1 - p^a t\right)}.$$

PROOF OF LEMMA 5.7. In the p-adic topology,

$$\lim_{s \to \infty} a_{s,k} = \lim_{s \to \infty} \frac{(p^s - 1) \cdots (p^{s-k+1} - 1)}{(p^k - 1) \cdots (p - 1)} = \frac{1}{(1 - p^k) \cdots (1 - p)}.$$

REMARK 5.8. There is a recursion relation, easily verified,

$$a_{s+1,k} - a_{s,k} = p^{s-k+1}a_{s,k-1}$$

This implies, for example, that p^{s-n+1} divides $(k_{s+1}(X) - k_s(X))$ where X is a wedge summand of $B(\mathbf{Z}/p)^n$. This can be improved slightly: noting that $N_{n,n} \simeq \mathbf{Z}/p[\mathrm{GL}_n(\mathbf{Z}/p)]$, where the projection $\mathbf{Z}/p[M_n(\mathbf{Z}/p)] \to \mathbf{Z}/p[\mathrm{GL}_n(\mathbf{Z}/p)]$ defines the module structure, we see that $p^{\binom{n}{2}}$ (= order of the p-Sylow subgroup of $\mathrm{GL}_n(\mathbf{Z}/p)$) divides $\dim eN_{n,n}$ for all idempotents $e \in \mathbf{Z}[M_n(\mathbf{Z}/p)]$. Thus we have that if $n \ge 2$, p^{s-n+2} divides $(k_{s+1}(X) - k_s(X))$, with X as above.

6. Further remarks and examples. As a practical matter, Theorem 1.2 is easiest to use when W acts freely on $P - \{0\}$. In this case,

$$k_s(G) = [(|P|^s - 1)/|W|] + 1.$$

EXAMPLES 6.1. (1) $G = \operatorname{GL}_2(\mathbf{F}_q)$, $q = p^n$. P is the unipotent subgroup of upper triangular matrices with 1's on the diagonal, $C_G(P)$ includes the constant diagonal matrices, and $N_G(P)$ is the set of all upper triangular matrices. It is easy to check that $W \simeq \mathbf{F}_q^*$ acting in the usual way on $P \simeq \mathbf{F}_q$. Thus

$$k_s(GL_2(\mathbf{F}_q)) = (q^s - 1)/(q - 1) + 1.$$

(2) $G = SL_2(\mathbf{F}_q)$ or $PSL_2(\mathbf{F}_q)$, q > 2. This is as in (1), except that now $W \simeq$ squares in \mathbf{F}_q^* . Thus

$$k_s(SL_2(\mathbf{F}_q)) = k_s(PSL_2(\mathbf{F}_q)) = 2(q^s - 1)/(q - 1) + 1.$$

EXAMPLE 6.2. With p = 3, let W be a 2-Sylow subgroup of $GL_2(\mathbb{Z}/3)$ (of order 16). Let $G = (\mathbb{Z}/3)^2 \rtimes W$. Then $P = (\mathbb{Z}/3)^2$, and W has four distinct subgroups of order 2 each of which is the isotropy subgroup of two distinct elements of $(\mathbb{Z}/3)^2$. Counting W-orbits in P^s having various isotropy subgroups leads to

$$k_s(G) = [(3^s + 2)^2 + 7]/16.$$

The next examples use the methods of §5.

EXAMPLE 6.3. If X is one of the (p-1) indecomposable summands of $B\mathbf{Z}/p$, then $k_s(X) = (p^s - 1)/(p-1)$.

EXAMPLE 6.4. As in [5, §7], we use the notation $X_{i,j}$, $0 \le i, j \le p-1$, to denote the p^2 distinct irreducible summands of $B(\mathbf{Z}/p)_+^2$, and $S_{i,j}$ to denote the corresponding irreducible $\mathbf{Z}/p[M_2(\mathbf{Z}/p)]$ -module. Here $X_{i,0} = X_i$ of Remark 4.3 (i.e. a summand of $B\mathbf{Z}/p^+$), and $S_{i,j} = S_{i,0} \otimes (\det)^j$. $X_{0,0} = S^0$. In [4], D. J. Glover computed the dimensions of the projective covers of the $S_{i,j}$. This amounts to computing $k_2(X_{i,j})$ for all i and j, and, by Remark 5.8, $k_1(X_{i,j})$ can also be immediately computed. We read off the following table.

T	`Δ	R	ī	F	1
	$\boldsymbol{\Lambda}$	v	ı.		_ 1

(i, j)		$k_1(X_{i,j})$	$k_2(X_{i,j})$
(i,0)	$0 < i \leqslant p - 1$	1	p + 1
(0, p-1)		1	2p + 1
(i, j)	i + j = p - 1 and $i, j > 0$	1	3p + 1
(0, j)	0 < j < p - 1	0	p
(p-1, j)	$0 < j \leqslant p - 1$	0	p
(i, j)	all other $(i, j) \neq (0, 0)$	0	2 p

By (5.4), $k_s(X_{i,j}) = a_{s,2}k_2(X_{i,j}) + a_{s,1}[1 - (p^{s-1} - 1)/(p - 1)]k_1(X_{i,j})$ for $(i, j) \neq (0, 0)$.

EXAMPLE 6.5. Let $L(n) = \Sigma^{-n}SP^{p^n}(S)/SP^{p^{n-1}}(S)$ [9]. L(n) is an indecomposable summand of $B(\mathbf{Z}/p)^n$ and corresponds to the Steinberg representation of $\mathbf{Z}/p[\mathrm{GL}_n(\mathbf{Z}/p)]$ pulled back to $\mathbf{Z}/p[M_n(\mathbf{Z}/p)]$. We first note that $k_s(L(n)) = 0$ for s < n. Welcher showed this topologically in [14] (see also [10, §4]). For an algebraic proof, it suffices to show that $e_n N_{n,k} = 0$ for k < n - 1, where $e_n \in \mathbf{Z}/p[\mathrm{GL}_n(\mathbf{Z}/p)]$ is a Steinberg idempotent, since $e_n B(\mathbf{Z}/p)_+^n \simeq L(n) \vee L(n-1)$. The relevant computation is easy and appears in [8]. With this information, it follows that

$$k_n(L(n)) = \dim e_n N_{n,n} = p^{\binom{n}{2}}.$$

We conclude

$$k_s(L(n)) = a_{s,n} p^{\binom{n}{2}}.$$

REMARK 6.6. With this formula, one can check that, for all s,

$$\sum_{n=0}^{s} (-1)^{s} k_{s}(L(n)) = 0.$$

The author has recently discovered [15] that formulae like this occur whenever $K(s)^*(\cdot)$ is applied to a "spacelike" resolution of a spectrum (e.g. the L(n) sequence of [9]).

REMARK 6.7. Suppose that X is an indecomposable summand of $B(\mathbf{Z}/p)^n$ such that $k_s(X) = 0$ for s < n (e.g. X = L(n)). Call such a summand regular. As in the last example, it follows that if X is regular, then $k_s(X) = a_{s,n}k_n(X)$, and $k_n(X)$ will be the dimension of an indecomposable projective $\mathbf{Z}/p[\mathrm{GL}_n(\mathbf{Z}/p)]$ -module. We conjecture that almost all the indecomposable summands of $B(\mathbf{Z}/p)^n$ are regular. More precisely, we conjecture that, with $r(n, p) = \text{number of regular summands of } B(\mathbf{Z}/p)^n$, $\lim_{p \to \infty} r(n, p)/p^n = 1$. This is true for $n \le 2$.

REFERENCES

- 1. J. F. Adams, J. H. Gunawardena and H. Miller, *The Segal conjecture for elementary abelian* p-groups, Topology **24** (1985), 435-460.
- 2. M. F. Atiyah, Characters and cohomology of finite groups, Publ. Math. Inst. Hautes Etudes Sci. 9 (1961), 247-288.
- 3. D. Carlisle, P. Eccles, S. Hilditch, N. Ray, L. Schwartz, G. Walker and R. Wood, *Modular representations of* GL(n, p), *splitting* $\Sigma(\mathbb{C}P^{\infty} \times \cdots \times \mathbb{C}P^{\infty})$, and the β -family as framed hypersurfaces, Math. Z. **189** (1985), 239–261.

- 4. D. J. Glover, A study of certain modular representations, J. Algebra 51 (1978), 425-475.
- 5. J. C. Harris and N. J. Kuhn, Stable decompositions of classifying spaces of finite abelian p-groups, Math. Proc. Cambridge Philos. Soc. (submitted).
 - 6. M. J. Hopkins and J. H. Smith, Nilpotence and stable homotopy theory. II (in preparation).
- 7. N. J. Kuhn, The mod p K-theory of classifying spaces of finite groups, J. Pure Appl. Algebra 44 (1987), 269-271.
 - 8. N. J. Kuhn, The rigidity of L(n), Proc. Topology year at Univ. of Washington (to appear).
- 9. N. J. Kuhn and S. B. Priddy, *The transfer and Whitehead's conjecture*, Math. Proc. Cambridge Philos. Soc. **98** (1985), 459-480.
 - 10. S. A. Mitchell, Finite complexes with A(n)-free cohomology, Topology 24 (1985), 227–248.
 - 11. D. G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411-418.
- 12. D. C. Ravenel, *Morava K-theories and finite groups*, Symposium on Algebraic Topology in Honor of José Adem, Contemp. Math., vol. 12, Amer. Math. Soc., Providence, R. I., 1982, pp. 289–292.
- 13. D. C. Ravenel and W. S. Wilson, The Morava K-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), 691-748.
- 14. P. J. Welcher, Symmetric fiber spectra and K(n)-homology acyclicity, Indiana J. Math. 39 (1981), 801-812.
- 15. N. J. Kuhn, *Morova K-theories and infinite loop spaces*, Proc. 1986 Arcata Topology Conference (to appear).

DEPARTMENT OF MATHEMATICS, PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY 08544

Current address: Department of Mathematics, University of Virginia, Charlottesville, Virginia 22903